QUANTIFYING THERMAL EXPOSURES AND EFFECTS FOR CENTRAL VALLEY ANADROMOUS SALMONIDS

Final Project – Presentation to address comments 7 March 2019

The Team

- Ben Martin (Research Ecologist) Team lead
- Alyssa FitzGerald (Postdoc) Distribution and thermal effects modeling
- Sara John (NOAA affiliate/Specialist) Temperature modeling, GIS processing/analysis
- Travis Apgar (PhD student) Assisting with GIS, compiling phenology database

Original goal

CWB Review of Literature regarding Thermal Talerances of California Salmonida UC Davi: Agreement & D16-14991

Define new thermal criteria for Central Valley salmonids

Table 1.1: Thermal Metrics for Central Valley Anadronous Salatonids

		Chinosh Salmon				Steathrad		
		FgB CS	Lass-Fall	Spring	Winter	Tibei	Metric	Citations
	38	39-14°C' 39-14°C'	(Cakanova)	(Vaicove	13.3403	(2000)	Minimal Mortality (*1684)	Fisher and Kaisse 2005 Mysick and Sec 2001
	Mests	Gakeesea	(SEE SOME)	(Jakassuz)	(Underson	(Calena tra)	Meriality (<1044)	
GR Stage	Javeselle	27-25°C° 39-3°C°	(Uaka:092)	(Vakouwa)	(Cakaowo)	19-20.5°C ²	Optimal Scowik	186/minis 822 Ced 2003 1822k 1987 136/minis 828 Ced 2005
Ť		28.8°C (8) 19°C	(SELOND)	Caixova	(Enimowa)	215-39.6°C ⊕ 11-59°C	Critical Florroad Maximum	Cects and Mysic 1989 Myrisch and Cod 2005
	Seesek	-17°C55	Cakaoma	Cakeowa	(Sakaowa	(Chicas por	Species fui Sumitification	* Marine and Con 2004
	Acob	21-24°C°V 18-21°C'S	(See some	3101	(Calcuova	(Takaswa)	Sdigration Student	Strange N10 Strange N10 Strange 1979 Williams 2006

Variation in Thermal Eco-physiology among California Salmonids: Implications for Management

May 31≈ 2018

Authors

Kenneth W. Zillig¹ Ph.D. Candidate

Robert A. Luzardi, Ph.D.² Senior Researcher

Naun A. Fangue, Ph.D.[‡] Professor

Original goal

Define new thermal criteria for Central Valley salmonids

"there will likely exist conditions where adherence to the Region 10 guidelines will become impossible or where thermally-manageable zones will shrink."

"For most life-stages and species for which thermal performance data exists, the Region 10 guidelines appear protective against temperature-induced mortality, but may be sub-optimal, either managing water too be warm or too cool. In both cases, exposure to sub-optimal temperatures can yield sub-lethal detrimental physiological and ecological effects"

CWB Review of Liberature regarding Thermal Tolerances of California Salmonida UC Davit Agreement 5: B16-15981

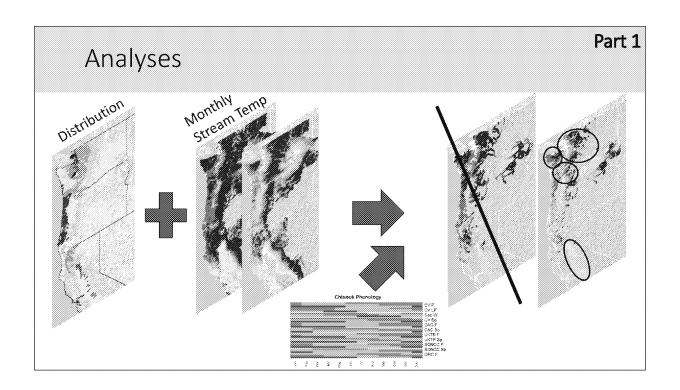
Variation in Thermal Eco-physiology among California Salmonids: Implications for Management

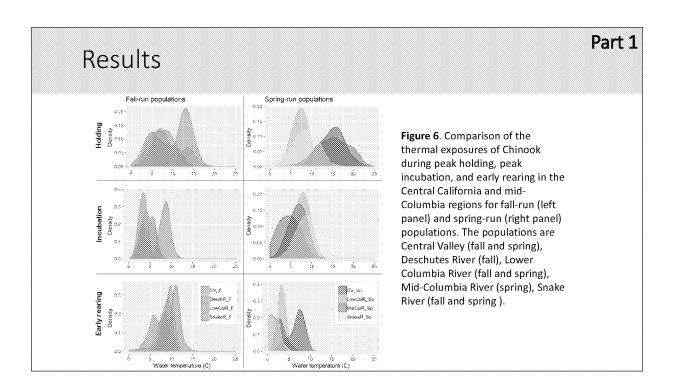
May 31** 2015

Authors

Kenneth W. Zillig¹ Ph.D. Candidate

Robert A. Lucardi, Ph.B.² Senior Researcher

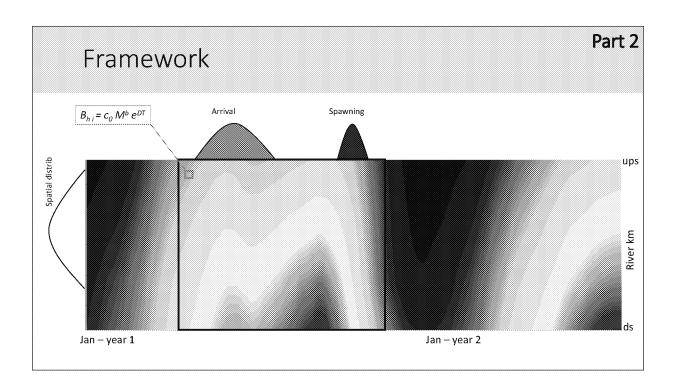

Naum A. Fangue, Ph.D.¹ Professor

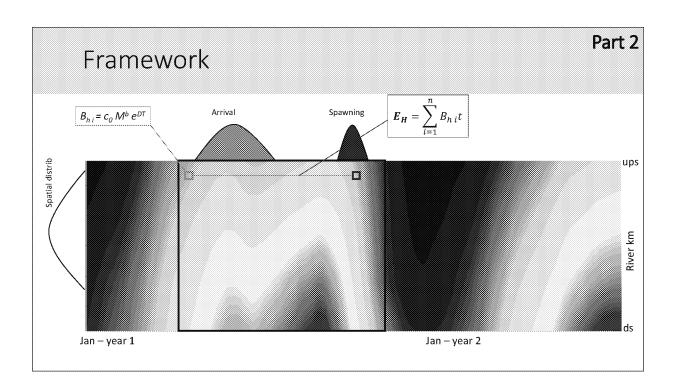

Questions

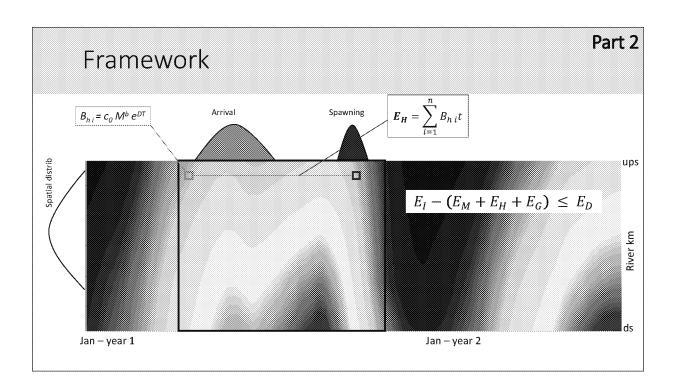
- Q1. How can we quantify the thermal environment experienced by Central Valley salmonid populations, and how does it differ from Region 10 populations?
- Q2. Can we improve site-specific temperature management in the Central Valley by using thermal performance curves?
- Q3. What additional studies are needed in order to develop specific thermal thresholds for the different life stages of salmonids in the Central Valley?

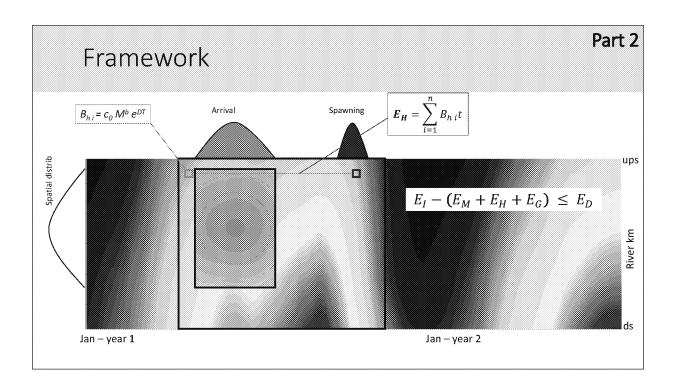
Part 1: What is the thermal environment experienced by Central Valley salmonid populations, and how does it differ from Region 10 populations?

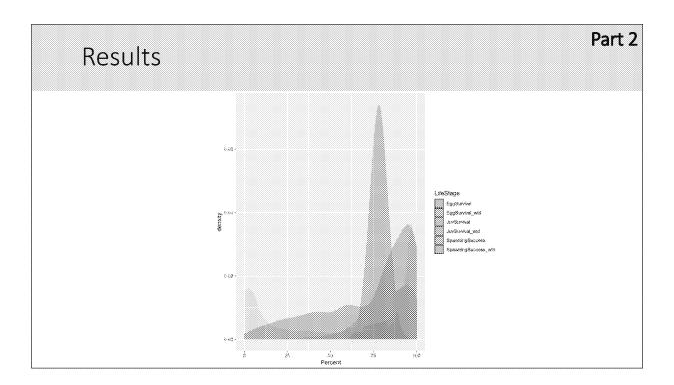
- Approach three datasets required:
 - Where do anadromous populations/life-stages occur?
 - · Distribution database
 - When do anadromous populations/life-stages occur?
 - Phenology database
 - What temperatures do salmon population experience when and where they occur?
 - Stream temperature






Q2. How can thermal performance curves improve temperature management of salmonid populations in the Central Valley?


Salmonid Uses During the Summer Maximum Conditions	Criteria
Bull Trout Juvenile Rearing	12°C (55°F) 7DADM
Salmon/Trout "Core" Juvenile Rearing (Salmon adult holding prior to spawning, and adult and sub-	16°C (61°F) 7DADM
adult hall tront for aging und migration may also be included in this use category;	
Salmon/Trout Migration plus Non-Core Juvenile Rearing	18°C (64°F) 7DADM
Salmon/Trout Migration	20°C (68°C) 7DADM, plus a provision to protect
	and, where feasible, restore the natural thermal regime


- "Region 10 guidelines...may be suboptimal" (Zillig et al. in prep)
- Replace a binary (above/below) threshold with a prediction for expected thermal impacts
- Determine thermal effects on different life stages
- Allow for prioritizing cold water resources in years/locations when Region 10 criteria cannot be meet
- Can be updated as better laboratory or field data become available for specific populations

